Dynamics Test: Topics to Review

- Motion Diagrams
- Force Diagrams
- Newton's First Law
 - o Inertial reference frames
 - Non-Inertial reference frames
 - Consistency between force diagrams and motion diagrams (Delta-v points in the same direction as the unbalanced force)
- Newton's Second Law
 - Acceleration is directly proportional to the unbalanced force
 - o Acceleration is inversely proportional to the mass of the object
 - Quantitative representation of Newton's Second Law $a = \frac{\Sigma F}{m}$
 - Difference between constant velocity motion and constant accelerated motion.
- Newton's Third Law
 - Newton's Third Pairs
 - Consistency between force diagrams (arrow lengths and arrow directions)
 - Quantitative representation of Newton's Third Law $F_{A-on-B} = -F_{B-on-A}$
- Friction
 - Normal force: Force of the surface on the object of interest, which is perpendicular to the surface.
 - Static Friction
 - Can vary between zero and a maximum value
 - Resists the movement of an object along a surface if the surfaces are NOT sliding against each other.
 - Quantitative representation of maximum force of static friction on any object: $F_{SF-on-O} = \mu_s N$
 - Kinetic Friction
 - Does not vary like static friction, remains the same.
 - Resists the movement of an object along a surface if the surfaces are sliding against each other.
 - Quantitative representation of maximum force of static friction on any object: $F_{SF-on-O} = \mu_k N$
 - Is usually WEAKER in strength than Static Friction.
- Springs

0

- Springs exert a force on another object based on how much they are stretched/compressed (Δx) and how stiff the spring is (spring constant, k).
- Hooke's Law: $F_{Spring-on-O} = k\Delta x$